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Let V be a finite dimensional subspace of L?, 1 < p < 00. For f € L?\V, it is
shown that the best approximation to f from V is strongly unique of order @ = 2 or
p. Let V be an n-dimensional Haar subspace of L'|a, b], the continuous functions
on [a,b] with the L' norm. Let f€ L'|a, b|\V, that is Lipschitz and so that
V,=span{V, f} is a Haar subspace. Then it is shown that the best approximation
to f from V is strongly unique of order 2.

0. INTRODUCTION

Given a Banach space X, a subset V, and an element f € X\V such that f
has a unique best approximation g* € V, we shall say that g* is strongly
unique at f if there exists a y = y(f) > 0 such that, for all g€ V,

If~el=lf—g*ll+7Ig— g*| (0.1)

Similarly, we shall say g* is strongly unique of order a(a > 1) at f if, for
some M >0, there exists y=y(f, M) >0 such that, for all g€V with
lg*— gl <M,

If—gl>If—g*l+vIig—g*I* (0.2)

The concept of strong uniqueness has been extensively studied in the
spaces C(T) with the uniform norm, T a compact subset of [a, b], and V a
Haar (Chebyshev) subspace. This strong uniqueness property plays an
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STRONG UNIQUENESS 15

important role in the Remes algorithm in this setting. It is known [5] that in
smooth Banach spaces, in particular L?(T,Z,u), 1 < p< oo, strong
uniqueness will not in general hold.

Strong uniqueness of order a has been shown to hold in Cla, b] for
monotone approximation with ¢ =2[3]. It can be easily shown that strong
uniqueness of order a(a < 1) is impossible and that strong uniqueness is
strictly a local property. This can be seen by use of the following easily
established fact.

LEMMA A. Let f€X\V and let g* €V be the unique best approx-
imation to f from V. Assume that dim V < co, then g* is strongly unigue of
order a, a > 1 if and only if

_ —_ — ok
Jim IS — &l H{a g*l
koo I8 — &*|l

>0

Jor all sequences { g} in V\{g*} with lim, | g, — g*||=0.

In the following, we shall study strong uniqueness of order « in certain L”
spaces, 1 < p < oo.

1. STRONG UNIQUENESS IN L'[a, b]

It is well known that best approximations need not exist in the general L'
approximation problem. Even if a best approximation exists, it need not be
unique. Interestingly, it is known that under fairly general conditions the set
of functions which have a strongly unique best approximation is dense in
L'[1].

The following example shows that strong uniqueness need not hold in
L'|a, b], with Lebesgue measure.

ExaMpLE 1. Leta=—1, b= 1, f(x)=x and define V to be the subspace
of constant functions on [—1, 1]. It is seen that g* =0 and if A € V" with
[A] < 1, we have

If =l =1+22 =1l + 1A}

Thus in this case, strong uniqueness of order 2 holds. By applying Lemma A,
it can be shown that the order 2 cannot be replaced with any smaller order.
In the following we shall show that in the L' norm strong uniqueness of
order 2 holds for a large class of problems.

Let V be an n-dimensional subspace of C[a, b] with the L' norm. Let
f € Cla, b]\V. Suppose that f is Lipschitz with constant k on [a, b]. Define
V,=span{V, f}. Assume that } and V, are Haar subspaces. Under these
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16 ANGELOS AND EGGER

conditions f has a unique best approximation g* from V[2]. By translating
by f we may assume that g* = 0. We shall show that under these conditions
strong uniqueness of order 2 holds at f.

LEMMA 1.1. Under the above hypotheses f has precisely n interior zeros,
2y, Zyss 2, in |a,b] at each of which f changes sign. Furthermore, if
N(z;,0)= {x:|x — z;| < 6} then there exists 5 > 0 and y > 0 such that

(a) N(z;,0)< [a, b, i=1,..,n,
(b) N(Zi’é)mN(zj’5)=® if‘l'#j,

(c) for each g€V, | gll,=1, there exists an i, 1 i n such that
| g(x)| > y for x € N(z;, d).

Progf. Conditions (a) and (b) are easily satisfied by choosing &
sufficiently small. Condition (c¢) follows from the compactness of the unit
ball in V, since V is a Haar subspace.

LEmMa 1.2. Ifge€ V then

1176~ g du> [ 1760 du+ 1o

where S=1{x€E |a,b]: a(gx)) = o(f(x)) and |gx)>2|f(x)} and
o(g(x)) = sign(g(x)).

Proof. Set S, = {x € [a,b]: o(f(x)) # o(gx)}, S, = {x € [a,b]:
o(f(x)) = o(g(x))} and S; = {x € [a,b]: o(f(x)) = o(g(x)) and | g(x)| >
| fCo)}. Then

[176)— g du=[ (5600 + g+ | ()

~|g@N) du+2 (g0~ 1/C) d

Since g*=0, we also have that [2o(f(x))g(x)du=0 for all g€ V[2].
Combining the two equations above we have that

(11769~ gl du=[ 170 da+ 2] (gl L) d

and so ,
J 1@ =gl du> | 170ldu+ ] |g@)du

as desired.
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LEMMA 1.3. There exists a ¢ > 0 and > 0 such that if 0 <A ¢, then
forallgeV, legl,=1,

b b
[ 1700 = 2ol du > | 17Ge) d+ 22

Proof. By Lemma 1.2, we have
-b b
[ 1760) = A8 du> | 1f0x) d + | 12800} s

where S, = {x € [a,b]: o(f(x)) = o(g(x)) and |Ag(x)l > 2|f(x)|}- Since
S/ is  Lipschitz, there exists a positive constant k& such that
[fx)—=f)<k|k—y| for all x, y€E€ [a,b], x+# y. With ¢ and y as in
Lemma 1.1, choose c¢=2kd/y. Then u{x€ [a,b]: od(g(x))=o(f(x)),
Al gl > 2| f(x) and | g(x)| > y} > yA/2k for each g€ V, | g|l, = 1. Thus for
0<A<e, folf —Aglo)l du > [31(x) du + BA* with § = y*/2k.

THEOREM 1.4. Under the above hypotheses, if M > 0 is given, then there
exists B’ > O such that

If— gl >Ir1+ Al gllt (1.1)

Sfor all g € V satisfying | gl||, < M.

Proof. For fixed M and the constant ¢ from Lemma 1.3, inequality (1.1)
holds for g € V, || g|l, < ¢, with constant 5. By compactness, inequality (1.1)
must also hold in the region g &€ V, M > | g||, > ¢ with some constant §,.
Choose ' = min(f, 8.).

By translating the above problem, we may write Theorem 1.4 as follows.

THEOREM 1.5. Let |a,b] be a real interval and let V be an n-
dimensional subspace of Cla,b]. Let f€ Cla,b]\V and suppose f is
Lipschitz on |a, b). Assume further that both V and span{f, V'} are Haar
subspaces. Let g* be the best approximation from V to fin the L' norm with
Lebesgue measure. Then strong uniqueness of order 2 holds at f, i.e., there
exist y=y(M, f) > 0 such that

If—gli=lr—g*li+vlg—g*li
Jfor all g € V satisfying | g|l, < M.

Remark 1. Under the conditions of Theorem 1.5 strong uniqueness of
order 2 holds. This need not be the lowest a for which strong uniqueness of
order a holds. If [a, b] is the interval [—1, 1], V" the subspace of constants,
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and f(x) = x*, the hypotheses of Theorem 1.5 hold. The best approximation
to fis g* =0, and strong uniqueness holds of order 4/3 here.

Remark 2. The Lipschitz condition on fin Theorem 1.5 is necessary. To
show this we again let [a, b] = [—1, 1], and V' be the subspace of constants.
If f(x)=x'" then the orther hypotheses of Theorem 1.5 hold but 4 is the
lowest order for which strong uniqueness holds in this case.

2. STRONG UNIQUENESS IN L?, 2 p< o0

Throughout the next section we assume that (7, 2, 1) is a positive measure
space, 2 < p < o0, and that V is a nontrivial finite dimensional subspace of
LP=LP(T,Z,u). If 1 < p < oo and f € LP\V then there exists a unique best
approximation g* € V to f. We shall need the following well-known result.

THeEOREM 2.1. (Characterization theorem). Let f€ L”\V, 1< p< oo,
then g* € V is the best approximation to f if and only if

J 1= g P o/~ g*)hdu=0,

Jor all hE V, where o(f — g*) =sign(f — g*).

In the case p =2, a direct computation yields the following lemma.

LEMMA 2.2. If p=2, strong uniqueness of order 2 holds at f.

Proof. Since |/ — gli=|/— g*I5+ | g— g*3, it suffices to show that
there exists y = p(M, f) > 0 such that for | g|, < M,

If—g*lz+lg—g*lz >/ — g*ll. +7Ilg— g*I:.

This is equivalent to finding y >0 such that 1>2y{f—g*[, +
Y g — g*|3 for g+ g*. ||/ — g*|, is fixed, so for any fixed M, | g|l, <M
implies || g — g*|l; < || g*|l, + M, so that such a y always exists.

To obtain similar results for L?, 2 < p < oo, we shall require the following
lemmas.

Lemma 2.3, Ifp>1, g > 0 then there exists M > 0 and y > 0 such that
if M>b/a>0 then (a +b)"" >a'’” + yb.

Proof. It suffices to show that for sufficiently small positive x,
(14+x)”?>14yx. This follows since ¢(x)=(14+x)—(1+7yx)’ is a
nonnegative, increasing function of x in some neighborhood of 0.

‘Given functions 4 and g in L?, we define supp(g) = {x: g(x) # 0} and we
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shall say that 4 and g are disjointly supported if u(supp(g) M supp(h))=0.
Otherwise, we shall say that they are mutually supported.

LEMMA 24. Let 1< p< 0. Let h € L? satisfy h# 0. Then there exists
M >0 and y > 0 such that if g € L?, h and g are disjointly supported, and
I glis <M then

t/p

(Llh+ gl"dﬂ)l/p> (Llhl”dﬂ) +Vfrtgf”du-

Progf. We have that

1/p

(] 17+ gl"dﬂ)w= (J’T|h|”+vg|”du)

By Lemma 2.3 there exists M > 0 and y > 0 such that ifJ lglPdu<M
T

/p

(J‘T|h+ glP d/l)]/p} (JT |f1? dﬂ)l +yJ'T,g|p du.

Lemma 2.5. If wE L% 2< p < oo, then |[hll, = [+ [wl""? |h[* du)"? is
a seminorm on L”.

Proof. It suffices to show that if g€ L” then [,|w|’"?|g|*du < .
Observe that [w[P=2 € L?*=?, Let p' = p/(p — 2), then if 1/p’ + 1/g' =1,
we have g’ = p/2. Now | g|* € L??, so by Hélders inequality we have

(p-2/p , .

. . 2p

[ w2 igl s ([ qwp=yprde) (] g) <o,

T T T

Hence || - ||, is a seminorm on L?. In fact, || - ||,, is a norm on any subspace
which contains no nonzero element supported disjointly from w.

LEMMA 2.6. Let p> 2, f€L"\V, and g* be the unique best approx-
imation from V to f. If f — g* and g are mutually supported for each g #0 in
V, then g* is a best weighted L’ approximation to f with weight function
\f—g*P2

Proof. [;|f— g*I”P 'o(f— g*)hdu=0 for all h€ V by Theorem 2.1.
Hence [;|f— g*|°? " *(f—g*)hdu=0 for all hE€ V. Theorem 2.1 then
yields that g* is the unique best weighted L* approximation to f with weight
function | f — g*|P 7%

THEOREM 2.7. If p>2 and f— g* and g are mutually supported for
each g# 0 in V then strong uniqueness of order 2 holds at f.
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Proof. By Lemma 2.2 and Lemma 2.6 we have that for each M there
existsy > 0 such that

1/2

(=g P -sgra) >(] 1/—a*ra)
+ij |f =& " g —g*|" du

for| gll,, < M. By an application of Holders inequality asin Lemma 2.5 and
by dividing through by (f,|f— g* |” du)'*~?/** we have the desired result
for || gll,, < M. By the equivalency of ||-||, and ||-1|,, on the finite dimen-
sional subspace I we have the desired result for || g||, < M,, where M, > 0.

We now derive a strong uniqueness result for the case when Vv contains
functions which are digointly supported from f —g*.Letp> 2, f € L*\V,
and assume that g* = 0, where g* isthe best approximation from V to f. Let
V, = {g €V:supp(g) = S} where S = supp(f) and S° denotes the
complement of §inT. Now, V, isasubspace of V and we may decompose
Vinto adirect sum V=V, @V,, whereV, < Vand ¥V, NV, = {O}. Hence,
ifgev,andg=0o0nS, then g= 0. Each g € V may be written uniquely in
the foom g = g, + g, with g, €¥, and g, €V,. Hence

[1r—grdu=] 1/ =gl dut| |g+ &l du
T N Sc

Since 0 €V, is the best approximation from ¥, to f, there exists y, and M,
such that if || g|, < M,

[ =gl au> sl + v 1l &7+ [ 1 gitealfdu—{ 1 gl du.
Fa T N

By Lemma23if || g|, < N there exists y, > 0 such that

1/ =&l > 1Ifll, + 7. 11 &5 + yz(L|g1+g2|”du—JS|gzl”dﬂ).
Hence

W =gl =01, + 7211 818205+ 71 1] &lla— v2 &5

Now p > 2, so that there exists M, > 0 such that for || g,[l, < M,,
Vil &l;>72 11 &5 Thus, for || gll, < M,, wehave ||/ —gll, > [ fl, +
Y21l &1 &ll}-

Trecrem 2. 8. |fp>2and Visa finite dimensional subspace of L? with
S € LP\V, then strong uniqueness of order p holds at f.
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Remark. The proof of Theorem 2.7 actually yields the result that there
exists f,, B, both positive such that if || gll, <M, ||f—gl, > If—gll, +

Billg— g*Il5 + B 1I(g — g*) xsll; where

(0 if x & supp(f — g*),
)1 if x € supp(f — g*).

Thus, in the case that /' — g* is mutually supported with each nonzero g in
V, we have that strong uniqueness of order 2 holds. The mutual support
condition will frequently be satisfied and holds, for example, when
span(V, /) is Haar. Note that in the case that there exists a nonzero function
g € V such that f — g* and g have disjoint support Lemma A implies that p
is the smallest order for which strong uniqueness can hold at f.

xs(x) =

Remark. A more general approach can be used in the case where X is a
sufficiently smooth Banach space, i.e., its norm is at least twice Frechet
differentiable on the subspace V and is positive definite on S(V)=
{geV:|gll=1}; dim V < 0. In this case, by the use of Taylor’s theorem
on the norm, g* is strongly unique of order 2. This order is also the best
possible.

For the L’ space, 2 < p < oo, in the mutual support situation the norm
will satisfy the above differentiability conditions. For a nice treatment of
norm differentiation see [4], which includes the L” norms.

3. STRONG UNIQUENESS IN L, 1 < p< 2

Let 1 < p<2 and (T, %, u) be a positive measure space. Let ¥ be an n-
dimensional subspace of L? = L*(T, Z, u). Suppose f € LP\V and 0 is the
best approximation from V to f. We shall show that strong uniqueness of
order 2 holds in this case. If g € V' we may write.

J1r—grdu=| laPdu+] 071+l dut| (Sl du

+[ (8l=1717 du

where Z(f) = {r: f(t) = 0}; § = T\Z(/)
S =8N {t:a(f(1) # o(1))},
S, =S80 {t:0(f(1)) =0(g() and | g| <|f1},
S;=8N{ro(f(1)=0(g(®)) and | /] <|gl}.
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Now using the Taylor expansion (a + #)? =a” + pa® 't +(p(p —1)/2)
(a+ wr)’~%* for a> 0 and some w, 0 <y < 1 we have that there exist
functions 6,,6,,6,,0<6,<1,i=1, 2, 3 for which

[ 1/~ gl du
=[ laPdut [ QP 4p1rr 8l +ip(p - DUSI+ 6, gy gt da
+] UrP=plrl~ el +3p(p—D(S1 6, | g7 ~6") du

+, (8P =plel S +ap(p =D gl = 61/ D a3

Now on §;, we have 0<|f|<|ghso|gl~ " |fI<[fIP""| gl and
~p | gl fI>—plfPP! gl; thus

[ [f—glrdu>] \gldu+] /P du—p| glrP~'o(f)du
+5p(P=D) | (/1+06,1 gy g% du
+]_ri-6lehr g dut | (el - 0,171y 7Y dw).

By Theorem 2.1, the third integral on the right of the above inequality is
zero and since the first and final integrals are nonnegative we have that

[ 15— gldu> [ 170 dutipp =] (/146,187 6" du
+f 018 ely " du).
Define 8(x) by 8(x) = 8,(x)on S, and 8(x) = —6f,(x) on S,. Then
=gl duz[ 1P dutip(p—Df (f1+018) 7 8l (32)
where U, = {x € supp(f):| g(x)| <|f(x)|} and | 8| <lonU,. We shal now

consider three cases.
casel. Suppose {g;}}.,is abads for V¥ and g, ..., g, are linearly
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independent on S =supp(f). Let A,={x:|f(x)|>1/k} and let B, ,=
{(x EA,:|g,(x)| < m, for all i}.

LEMMA 3.1. There exists k and m positive integers such that g,,..., g,
are linearly independent on B, ..

Proof. Assume otherwise. Then for each fixed k and for each m we may
select af,..., ay such that 3’7, |a*|=1 and }'/_,al'g;=0 ae. on B, ,.
Thus some subsequence of vectors (af,..., a)’) converges to (a,,..., a,) with

ioila|=1. Let Wy={x€A,:|g(x)=oo for some i} and let W, =
{(xEB, i 2.1 a7g(x)#0}. Then u(Wy)=0 and ux(W,)=0, hence
W=Ug W, has measure zero. If x € 4, \W, then x € B, ,\(W,U W,,) for
large m, hence Y} ,;8,=0 ae. on A,. Thus g,,.., g, are linearly
dependent on A, for each k. Hence for each k we may select f%,..., % such
that 37_,|#%| =1 and }7_, B%g, =0 a.e. on 4,. Again some subsequence of
(B%,... B%) converges to (B, ..., 8,) such that "7, |8 = L.

Let

Vo= {x € supp(f):| g(x) = co for some i},
Vk=:x€Ak:2ﬂf.‘g,-(x);é0€, k=1,2,.,
i=1
and

v=Uv,.

ocg

Then u(V,) =u(V,) =u(V)=0 for each k=1, 2,.... For x € supp(f)\V we
have x € A,\V for all large k and 3'7_, B%g, =0 for all k, thus >"7_, ,8,=0
a.e. on supp(f). This contradiction establishes the lemma.

Select & and m as in Lemma 3.1. For any g=>"}_, y; g we have that
llgll« =227, ]y;| is a norm on V¥ and hence there are positive numbers a and
b such that a|| - ||, <[ - I« <&] - ||, on V. Suppose || g||, < 1/kmb, then, for
x€ By 8= 1Y ) <mlgle <lgl,mb and | gll,mb<|/(x)
implying x € U,. Thus, B, ,<U,. Furthermore, 0 <|f(x) + &|g(x) <
2]f(x) and since 1 < p <2,

(Sl + 0] g2 > 2777 | f(x)P 2.

Now U, is measurable and (|f|+ @|g|)*~?|g|’ is integrable on U,. Thus,
|f1P~2|g|* is integrable on B, ,, and

)

/P lgldu< | (f1+ 61817 %" du

k.m
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From Lemma 2.5 we have that || gllx« = (3, - | f1P~*g* du)"/* is a norm on V
since |f|°~*>0 on B, ,, and g,,..., g, are linearly mdependent there. Thus,
by the equivalence of norms in finite dimensional spaces, we have that there
exists y, > O such that if || g||, < 1/mbk
[1r—gPdu>{ IrP+, (f lgl? du)
T T T

2/p

by (3.2) and (2.1). Hence, by Lemma 2.3 we have that for || g|, sufficiently
small, there exists y > 0 such that

I/ = gll, =171, + vl g2

Therefore, strong uniqueness of order 2 at f holds in this case.

Case 2. Suppose u(supp(g) M supp(f))=0 for all g€ V. Then, as in
Section 3, strong uniqueness of order p holds at f.

Case 3. Suppose that there exists a g€V, g#0, such that
u(supp(g) N supp(f)) =0, but not all nonzero g € V satisfy this condition.
This is, in fact, the true general case. As before break up ¥V into
Vi={g€V: u(supp(g) N supp(f))=0} and V, the subspace such that
V=V, ®V,, ie, if h€ V, and h(x)=0 for all x € supp(f) then A=0.
Each g € V may be uniquely written in the form g= g, + g, where g, € V|
and g, € V,. Then we have that

(1= + e du= =gl dut| |g+el du
T N zZH

where S = supp(f). By Lemma 2.3, we have that given M, > O there exists
Yo = Yo(fs M) > 0 such that || g||, < M, implies

If—gll,> (js If— &l du) W + 70 (sz lg, + & du) .

By Case 1, 0 is the strongly unique best approximation of order 2 to f from
V, on S. Thus, there exists y,>0 and M,>0 such that if

Uslel du)'’? < M,,

17— el >0t ([ g ds) ([ e+ el as).

On V,, the norms || - ||, and || g,||" = (/s | g|” du)'’” are equivalent. Hence, for
some M, > 0 and y, > 0, we have

17~ gl > 171, + 7 galls + 70 f 181+ &al” e (32)
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provided g € V is such that || g,||, < M,. Now since V=V, @ V, there exists
M, >0 such that | g||, <M, implies || g,|, < M,, hence (3.2) holds for all
gE V with | gll, <M,. Set y, =min(y,, y,). We consider the following two
subcases.

Subcase (a). If || g,ll, > 11 gll,» we have that

Y
1S = &l = /1, + ¢ el
Subcase (b). If | g,ll, < il gll,, then
I =gl >0, +3] Tel
40
Thus £ — gll, > /11, + 720l gll2 — I &2/15). Hence,

17— gll, > 171, + 2211l

So strong uniqueness of order 2 must hold in Case 3 since 1 < p < 2.

Remark, In this case, the orders of strong uniqueness are not necessarily
best possible, as the following example illustrates. Let V" be the subspace of
constant functions in L”[—2,2| and define f€ L?[—2,2] to be —1 on
[-2,—1], 1 on [1,2] and zero elsewhere. Then, g* =0 and f and g are
mutually supported for all g € V, but g* is strongly unique of order p.

4, CONCLUSION

In the previous sections, it was shown that in the L” norms strong
uniqueness of order 2 holds for a wide class of problems. For the case when
p > 2, these orders are shown to be best possible. However. for the case
1 < p < 2, these order are not necessarily best possible.
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