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Let V be a finite dimensional subspace of U, 1 < p < 00. For J E U\V, it is
shown that the best approximation to J from V is strongly unique of order a = 2 or
p. Let V be an n-dimensional Haar subspace of L 'la, b j, the continuous functions
on Ia, b] with the L I norm. Let J ELI Ia, b1\V, that is Lipschitz and so that
V, = span{ V,J} is a Haar subspace. Then it is shown that the best approximation
to J from V is strongly unique of order 2.

O. INTRODUCTION

Given a Banach space X, a subset V, and an element! E X\V such that!
has a unique best approximation g* E V, we shall say that g* is strongly
unique at! if there exists a y = y(f) > 0 such that, for all g E V,

Ilf - gil ~ Ilf - g* II + y II g - g* II· (0,1)

Similarly, we shall say g* is strongly unique of order a(a > 1) at f if, for
some M > 0, there exists y = y(f, M) >0 such that, for all g E V with
II g* - gil <M,

II! - gil ~ Ilf - g*11 + y 1Ig- g*lla. (0.2)

The concept of strong uniqueness has been extensively studied in the
spaces C(T) with the uniform norm, T a compact subset of [a, b j, and Va
Haar (Chebyshev) subspace. This strong uniqueness property plays an
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STRONG UNIQUENESS 15

important role in the Remes algorithm in this setting. It is known [5] that in
smooth Banach spaces, in particular LP(T, E,p.), 1 <P < 00, strong
uniqueness will not in general hold.

Strong uniqueness of order a has been shown to hold in C[a, b 1 for
monotone approximation with a = 2 [3]. It can be easily shown that strong
uniqueness of order a(a < 1) is impossible and that strong uniqueness is
strictly a local property. This can be seen by use of the following easily
established fact.

LEMMA A. Let f E X\V and let g* E V be the unique best approx­
imation to f from V. Assume that dim V < 00, then g* is strongly unique of
order a, a ~ 1 if and only if

for all sequences {gd in V\{ g*} with limk~<Xl II gk - g* II = O.

In the following, we shall study strong uniqueness of order a in certain LP
spaces, 1 ~ P < 00.

I. STRONG UNIQUENESS IN L I [a, b]

It is well known that best approximations need not exist in the general L I

approximation problem. Even if a best approximation exists, it need not be
unique. Interestingly, it is known that under fairly general conditions the set
of functions which have a strongly unique best approximation is dense in
L I [I].

The following example shows that strong uniqueness need not hold in
L I [a, b], with Lebesgue measure.

EXAMPLE 1. Let a = -1, b = 1, f(x) = x and define V to be the subspace
of constant functions on [-1, 1]. It is seen that g* = 0 and if AE V with
1,1,1 ~ 1, we have

Ilf - AliI = 1 + ,1,2 = Ilflll + ~ IIAlli·

Thus in this case, strong uniqueness of order 2 holds. By applying Lemma A,
it can be shown that the order 2 cannot be replaced with any smaller order.
In the following we shall show that in the L I norm strong uniqueness of
order 2 holds for a large class of problems.

Let V be an n-dimensional subspace of C[a, b] with the L I norm. Let
fE C[a,b]\V. Suppose thatfis Lipschitz with constant k on [a,b]. Define
VI = span{V,f}· Assume that V and VI are Haar subspaces. Under these
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16 ANGELOS AND EGGER

conditions f has a unique best approximation g* from V[2]. By translating
by fwe may assume that g* == O. We shall show that under these conditions
strong uniqueness of order 2 holds at f

LEMMA 1.1. Under the above hypotheses f has precisely n interior zeros,
z l' Z 2 , ... , Z n in [a, b] at each of which f changes sign. Furthermore, if
N(z;, 0) == {x: Ix - z;1 < o} then there exists 0> 0 and y> 0 such that

(a) N(z;, 0) c [a, b], i = 1,... , n,

(b) N(z;,0)nN(zj,0)=0 ifi =1= j,

(c) for each g E V, !I gill = 1, there exists an i, 1~ i ~ n such that
I g(x)1 > y for x E N(z;, 0).

Proof Conditions (a) and (b) are easily satisfied by choosing 0
sufficiently small. Condition (c) follows from the compactness of the unit
ball in V, since V is a Haar subspace.

LEMMA 1.2. If g E V then

b bf If(x) - g(x)1 diJ ~ f If(x)! diJ +J 1 g(x)1 diJ
a a 5

where S= {xE [a,b]: a(g(x)) = a(f(x)) and Ig(x)1 > 2If(x)!} and
a(g(x)) = sign(g(x)).

Proof Set Sl = {x E [a,b]: a(f(x)) *- a(g(x))}, Sz = {x E [a,b]:
a(f(x)) = a(g(x))} and S3 = {x E [a, b]: a(f(x)) = a(g(x)) and Ig(x)1 >
If(x)I}. Then

bf If(x) - g(x)1 diJ = f (!f(x)1 +Ig(x)l) diJ +f (If(x)1
a 5, 52

-I g(x)1) diJ + 2J (I g(x)I-lf(x)1) diJ·
53

Since g* == 0, we also have that f~ a(f(x)) g(x) diJ = 0 for all g E V[2].
Combining the two equations above we have that

b bf If(x) - g(x)\ diJ = f If(x)1 diJ + 2f (\ g(x)I-lf(x)l) diJ
a a 53

and so
b bf If(x) - g(x)1 diJ ~ f If(x)1 diJ +f Ig(x)1 diJ
a a 5

as desired.
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LEMMA 1.3. There exists a c >0 and fl >0 such that if 0 ~ A~ c, then
for all gE V, II gill = 1,

b bf If(x) - Ag(x)1 dJi ~f If(x)1 dJi + flA 2.
a a

Proof By Lemma 1.2, we have

( If(x) - Ag(x)1 dJi ~rIfix)1 dJi +f IAg(x)1 dJi
a a S.l

where SJ,.= {xE la,bJ: a(f(x)) = a(g(x)) and IAg(x)1 > 2If(x)I}. Since
f is Lipschitz, there exists a positive constant k such that
If(x)-f(y)l~klk-yl for all x, yE la,bJ, x:;t:y. With 0 and y as in
Lemma 1.1, choose c = 2kO/y. Then Ji{x E la, bJ: a(g(x)) = a(f(x)),
A Ig(x)1 > 2If(x)1 and Ig(x)1 > y} > yA/2k for each g E V, II gill = 1. Thus for
o< A~ c, f~ If - Ag(x)1 dJi ~ f~ If(x)1 dJi + flA 2 with fl = y2/2k.

THEOREM 1.4. Under the above hypotheses, if M > 0 is given, then there
exists fl' > 0 such that

Ilf - gill ~ Ilfll + fl' II glli (1.1 )

for all g E V satisfying II gill ~ M.

Proof For fixed M and the constant c from Lemma 1.3, inequality (1.1)
holds for g E V, II g III ~ c, with constant fl. By compactness, inequality (1.1)
must also hold in the region g E V, M ~ II gill ~ c with some constant flc.
Choose fl' = min(fl, flc)'

By translating the above problem, we may write Theorem 1.4 as follows.

THEOREM 1.5. Let la, bJ be a real interval and let V be an n­
dimensional subspace of C[a, bJ. Let fE C[a, bJ\V and suppose f is
Lipschitz on la, bJ. Assume further that both V and span{f, V} are Haar
subspaces. Let g* be the best approximation from V tofin the L I norm with
Lebesgue measure. Then strong uniqueness of order 2 holds at f, i.e., there
exist y = y(M, f) > 0 such that

Ilf - gill ~ IIf - g*lll + y II g - g*lli

for all g E V satisfying II gill ~ M.

Remark 1. Under the conditions of Theorem 1.5 strong uniqueness of
order 2 holds. This need not be the lowest a for which strong uniqueness of
order a holds. If [a,bJ is the interval [-1, IJ, V the subspace of constants,
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and f(x) = x 3
, the hypotheses of Theorem 1.5 hold. The best approximation

to f is g* == 0, and strong uniqueness holds of order 4/3 here.

Remark 2. The Lipschitz condition onfin Theorem 1.5 is necessary. To
show this we again let [a, b] = [-1, 1], and V be the subspace of constants.
If f(x) = X l/3 then the orther hypotheses of Theorem 1.5 hold but 4 is the
lowest order for which strong uniqueness holds in this case.

2. STRONG UNIQUENESS IN LP, 2 ~ p < 00

Throughout the next section we assume that (T, E, 11) is a positive measure
space, 2 ~ p < 00, and that V is a nontrivial finite dimensional subspace of
LP == LP(T, E, 11). If 1 <P < 00 and f E LP\V then there exists a unique best
approximation g* E V to f We shall need the following well-known result.

THEOREM 2.1. (Characterization theorem). Let f E L P\V, 1 <P < 00,

then g* E V is the best approximation to f if and only if

LIf - g*IP-I a(f - g*)h dl1 = 0,

for all hE V, where a(f - g*) = sign(f - g*).

In the case p = 2, a direct computation yields the following lemma.

LEMMA 2.2. If P = 2, strong uniqueness of order 2 holds at f

Proof Since Ilf - gll~ = Ilf - g* II~ + II g - g* IlL it suffices to show that
there exists y = y(M, f) > 0 such that for II gl12 ~ M,

JIll - g*ll~ + II g - g*ll~ ~ Ilf - g*112 + y II g - g*II~·

This is equivalent to finding y> 0 such that 1~ 2y Ilf - g* 112 +
y2 11 g _ g* II~ for g * g*. Ilf - g* 112 is fixed, so for any fixed M, II gl12 ~ M
implies II g - g* 112 ~ II g* 112 +M, so that such a y always exists.

To obtain similar results for LP, 2 < p < 00, we shall require the following
lemmas.

LEMMA 2.3. If P ~ 1, q> 0 then there exists M> 0 and y> 0 such that
ifM~ bla ~ 0 then (a + b)I/P ~ a 1/p + yb.

Proof It suffices to show that for sufficiently small positive x,
(1 + x)IIP ~ 1 + yx. This follows since ~(x) = (1 + x) - (1 + yxy is a
nonnegative, increasing function of x in some neighborhood of O.

Given functions hand g in U, we define supp(g) == {x: g(x) * O} and we



STRONG UNIQUENESS 19

shall say that hand g are disjointly supported if ,u(supp(g) n supp(h)) = O.
Otherwise, we shall say that they are mutually supported.

LEMMA 2.4. Let 1 < p < 00. Let hELP satisfy h i= O. Then there exists
M> 0 and y >0 such that if g E LP, hand g are disjointly supported, and
II gll~:;;;; M then

Proof We have that

By Lemma 2.3 there exists M> 0 and y> 0 such that ift IglP dll:;;;; M

. I/P. l/p

U
T

Ih + glP d,u) ;> (t Ifl Pd,u) + yt IglP dll·

LEMMA 2.5. If w E U, 2 < p < 00, then Ilhll", = (IT IwlP~2lh [2 dll)I/2 is
a seminorm on LP.

Proof It suffices to show that if g E U then JT Iw1P~21 gl2 dll < 00.

Observe th.at Iwl p
-

2E U/(P-2). Let p' = pl(p - 2), then if lip' + 1/q' = 1,
we have q' = p12. Now Igl2 E LP/2, so by Holders inequality we have

Hence II . II". is a seminorm on LP. In fact, II . IIII' is a norm on any subspace
which contains no nonzero element supported disjointly from w.

LEMMA 2.6. Let p> 2, f E LP\V, and g* be the unique best approx­
imationfrom V tof Iff - g* and g are mutually supportedfor each gi=O in
V, then g* is a best weighted L 2 approximation to f with weight function
If - g*IP -

2
•

Proof JTIf - g* IP- lo(f - g*) h d,u = 0 for all h E V by Theorem 2.1.
Hence JT If - g* IP- 2(f - g*) h dll = 0 for all hE V. Theorem 2.1 then
yields that g* is the unique best weighted L 2 approximation to f with weight
function If - g*IP-2.

THEOREM 2.7. If P > 2 and f - g* and g are mutually supported for
each g i= 0 in V then strong uniqueness of order 2 holds at f
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Proof. By Lemma 2.2 and Lemma 2.6 we have that for each A4 there
exists y > 0 such that

+yj lf-g*lP-21eg*12~P
T

for 11 gllw GM. By an application of Holders inequality as in Lemma 2.5 and
by dividing through by CT, If- g* lp c&)(~-~)‘*~  we have the desired result
for II gll,,, < 44. By the equivalency of 1) . IJp and II . (lw on the finite dimen-
sional subspace  V we have the desired result for II gllP < M,, where M, > 0.

We now derive a strong uniqueness result for the case when V contains
functions which are disjointly supported from f - g*. Let p > 2, f E Lp\V,
and assume that g* 3 0, where g* is the best approximation from V toJ Let
V, = {g E V: supp(g) c SC) where S = supp(f)  and SC denotes the
complement of S in T. Now, V, is a subspace of V and we may decompose
V into a direct sum V = V, @ V,, where V, c V and V, r7 V, = {O}. Hence,
if g E V, and g G 0 on S, then g z 0. Each g E V may be written uniquely in
the form g = g, + g, with g, E V, and g, E V2. Hence

Since 0 CZ V2 is the best approximation from V2 to J there exists y, and M,
such that if 1) gJlp < M,

I, If - &TIP dP 2 WII, + Y1 II g211;)p  + jT I g, + g21P 4 - ly I g21P &a

By Lemma 2.3 if /( g((, < N there exists y2 > 0 such that

IV - Alp 2 Ilfll, + ~1 II gzll; + 72 (I, I g, + g2 I’ dp -I, I g2 I’ 6) .

Hence

Ilf - slip a Ilfll, + 72 II g1 + g2ll;  + Yl II g2lli - Y2 II &?2  II:: *

Now p > 2, so that there exists M, > 0 such that for 1) g211p  GM,,
YI II s2ll; > Y2 II g211;. Thus,  for II Alp < M,, we have llf - gllp > Ilfll, +
Y2 II g1 + &II;.

THEOREM 2.8. If p > 2 and V is a finite  dimensional subspace  of Lp with
f E Lp\V, then strong uniqueness of order p holds at J:
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Remark. The proof of Theorem 2.7 actually yields the result that there
exists PI' P2 both positive such that if II gllp ~ M, Ilf - gllp ~ Ilf - gllp +
PI II g - g*ll~ +P211(g - g*)xsll; where

\0
Xs(x) = 11

if x E supp(f - g*),
if x E supp(f - g*).

Thus, in the case that f - g* is mutually supported with each nonzero g in
V, we have that strong uniqueness of order 2 holds. The mutual support
condition will frequently be satisfied and holds, for example, when
span(V, f) is Haar. Note that in the case that there exists a nonzero function
g E V such that f - g* and g have disjoint support Lemma A implies that p
is the smallest order for which strong uniqueness can hold at f

Remark. A more general approach can be used in the case where X is a
sufficiently smooth Banach space, i.e., its norm is at least twice Frechet
differentiable on the subspace V and is positive definite on S(V) =
{g E V: II gil = I}; dim V < 00. In this case, by the use of Taylor's theorem
on the norm, g* is strongly unique of order 2. This order is also the best
possible.

For the LP space, 2 ~ p < 00, in the mutual support situation the norm
will satisfy the above differentiability conditions. For a nice treatment of
norm differentiation see [4], which includes the LP norms.

3. STRONG UNIQUENESS IN LP, 1 < P < 2

Let 1 < p < 2 and (T, E, jJ) be a positive measure space. Let V be an n­
dimensional subspace of LP == LP(T, E, jJ). Suppose f E LP\V and °is the
best approximation from V to f We shall show that strong uniqueness of
order 2 holds in this case. If g E V we may write.

f If - glP djJ =f IglP djJ +f 1(lfl + 1glY djJ +J (Ifl-I glY djJ
T Z(j) S, 52

+f (/ g I- IflY djJ
S3

where Z(f) = {t: f(t) = o}; S = 1\Z(f)

S\ = S n it: a(f(t) * a(g(t))},

S2 = S n it: a(f(t)) = a(g(t)) and Igl < Ifl},

S3=Sn {t:a(f(t)=a(g(t)) and IfI< Igl}·
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Now using the Taylor expansion (a + t)P = CP + pap-It  + (p(p - 1)/2)
(a + Cc/t)p-2t2  for a > 0 and some y, 0 < y < 1 we have that there exist
functions 6,, 0,, t?,,  O<Bi,<  1, i= 1, 2, 3 for which

= I, I glP dP + js, (IA” + P If!“-’  I gl + MP - 1Mfl + 8, I gl)p-2g2)  d‘

+ _f (tfi” - to kfi”-’  t id+ ‘$P<P - I)(ifl - 62 I gl)“-2g2)  dEcs2

+ Isj (I glP - P I glP-’ Ifl+ $PD(P  - l)(l gl - 0, lfl)“-‘f’) 44. (3.1)

N o w  on S,, w e  h a v e  0 < IfI< /g/, so / gfp-’ IfI< IfI”-’  I gl and
-P I glp-’  VI > -P VI”-’  I gl; thus

+ iP(P - 1) I,, (IfI+ 8, I gl)p-2 g2 Q

+ js,  (IfI- 82 I gl)p-2g2  4 +ls, (I 4 - 4 lfl>“-‘f’ &I*

By Theorem 2.1, the third integral on the right of the above inequality is
zero and since the first and final integrals are nonnegative we have that

jT If- g/h > jT lflp dp + fp(p - 1) (i,, WI + 8, I gi)p-2g2 dlt

+j~~~If.l-~,Isl~‘-*~‘~~j~

Define 0(x)  by B(x) = 8,(x on S, and 8(x)  E -B,(x) on S,. Then)

~~lS-~ia~iiBjrl~lpC+f~(P-~)~~~~l/i+~l~l~p-2l~l2~~  P-2)

where U, = (x E supp(f):  / g(x)1  < /f(x)/  f and / 6/G 1 an U,. We shall now
consider three cases.

Case 1. Suppose { gi}f=, is a basis for V and g, ,..., g, are linearly
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independent on S = supp(f). Let Ak = {x: If(x)1 ~ 11k} and let Bk,m =
{x E A k: Ig;(x)1 ~ m, for all if.

LEMMA 3.1. There exists k and m positive integers such that g1>"" gn

are linearly independent on Bk,m'

Proof Assume otherwise. Then for each fixed k and for each m we may
select a'[',... , a: such that L?=I la~1 = 1 and L?=I a~g; = 0 a.e. on Bk m'
Thus some subsequence of vectors (a'[', ..., a:) converges to (a l , ... , an) w'ith
L?=lla;I=1. Let Wo={xEAk:lg;(x)l=oo for some i} and let Wm =
{xEBk,m:L?=la~gi(x)*O}. Then .u(Wo)=O and .u(Wm) = 0, hence
W = U~ Wm has measure zero. If x E Ak\W, then x E Bk,m\(Wo U Wm) for
large m, hence L?=la;g;=O a.e. on Ak. Thus gl>... ,gn are linearly
dependent on Ak for each k. Hence for each k we may select fl~ ,... , fl~ such
that L?=llfl71 = 1 and L?=I fl7gi = 0 a.e. on Ak. Again some subsequence of
(f37, ...,fl~) converges to (f31> ... ,fln) such that L?=llflil = 1.

Let

Vo= {x E supp(f): Igi(x)1 = 00 for some if,

Vk= )XEA k:t/7g;(X)*0(, k= 1,2,... ,

and

Then .u(Vk) =.u(Vo) = .u(V) = 0 for each k = 1,2,.... For x E supp(f)\V we
have x E Ak\V for all large k and L?= I fl~g; = 0 for all k, thus L?= I fl; g; = 0
a.e. on supp(f). This contradiction establishes the lemma.

Select k and m as in Lemma 3.1. For any g = L?= I y; gi we have that
II gll* = L?~I ly;1 is a norm on V and hence there are positive numbers a and
b such that a II . lip ~ II ·11* ~ b II . lip on V. Suppose II gllp ~ llkmb, then, for
x EBk,m' Ig(x)1 = IL y;g;(x)1 ~ m II gll* ~ II gllp mb and II gllp mb < If(x)1
implying x E Ug • Thus, Bk,m C Ug • Furthermore, 0 < If(x)1 +eIg(x)1 ~
2If(x)1 and since 1 < p < 2,

(If(x)1 +eIg(x)ly-2 ~ 2P- 2If(x)IP-2.

Now Ug is measurable and (IfI+ eIgly-21gl2 is integrable on Ug • Thus,
If1P

-
21gl2 is integrable on Bk,m and
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From Lemma 2.5 we have that II gll** = UB I/IP
-

2g 2dfJ)112 is a norm on V
2 k~

since I/IP- > 0 on B k,m and g 1''''' gn are lInearly independent there. Thus,
by the equivalence of norms in finite dimensional spaces, we have that there
exists YI >0 such that if II gllp:S;;; l/mbk

(

. 21p
Ir II - glP dfJ ~ IT I/IP + YI f TIglP dfJ )

by (3.2) and (~,l). Hence, by Lemma 2.3 we have that for II gllp sufficiently
small, there eXists Y>0 such that

Therefore, strong uniqueness of order 2 at I holds in this case.

Case 2. Suppose fJ(supp(g) n supp(f)) = 0 for all g E V. Then, as in
Section 3, strong uniqueness of order p holds at f

Case 3, Suppose that there exists agE V, g i= 0, such that
fJ(supp(g) n supp(f)) = 0, but not all nonzero g E V satisfy this condition.
This is, in fact, the true general case. As before break up V into
VI = {g E V: fJ(supp(g) n supp(f)) = O} and V2 the subspace such that
V = VI (j;) V2 , i.e., if h E V2 and h(x) = 0 for all x E supp(f) then h == O.
Each g E V may be uniquely written in the form g = gl + g2 where gj E V1

and g2 E V2 • Then we have that

f
1/-(gl+g2)IPdfJ=f I/-g2IPdfJ+f Ig\+g2IPdfJ

T s z~

where S = supp(f). By Lemma 2.3, we have that given M o> 0 there exists
Yo = Yo(/, M o) >0 such that II gllp :s;;; M o implies

By Case 1, 0 is the strongly unique best approximation of order 2 to I from
V

2
on S. Thus, there exists YI > 0 and M, > 0 such that if

(fslg2IPdfJ)IIP <MI'

III - gllp ~ 1I/IIp + Yl (Is Ig21PdfJ) 21p + Yo (J(Z~) Igl + g21
P

dfJ) .

On V2, the norms II . lip and II g211' = (fs IglP dfJ)IIP are equivalent. Hence, for
some M 2> 0 and Y2 > 0, we have
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provided g E V is such that II gzllp ~ M z. Now since V = VI G1 Vz there exists
M 3 ~ 0 such that II gllp ~ M 3 implies II gzllp ~ M z, hence (3.2) holds for all
gE V with II gllp ~ M 3 • Set Y3 = min(yo' yz)· We consider the following two
subcases.

Subcase (a). If II gzllp ~ ~ II gllp, we have that

Subcase (b). If II gzllp < ~ II g lip, then

Thus Ilf - gllp ~ Ilfllp + Yill gll~ -II gzll~)· Hence,

Ilf - gllp ~ Ilfll p + ~~ II gll~·

So strong uniqueness of order 2 must hold in Case 3 since 1 < P < 2.

Remark. In this case, the orders of strong uniqueness are not necessarily
best possible, as the following example illustrates. Let V be the subspace of
constant functions in L p [ - 2, 2] and define f E L p [-2, 2] to be -Ion
[-2,-1],1 on [1,2] and zero elsewhere. Then, g*==:O andfand g are
mutually supported for all g E V, but g* is strongly unique of order p.

4. CONCLUSION

In the previous sections, it was shown that in the L P norms strong
uniqueness of order 2 holds for a wide class of problems. For the case when
p ~ 2, these orders are shown to be best possible. However. for the case
I < P < 2, these order are not necessarily best possible.
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